Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
⊢ Rel ◡ { 〈 〈 𝑞 , 𝑟 〉 , 𝑝 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn 〈 𝑞 , 𝑟 〉 ∨ 𝑞 Btwn 〈 𝑟 , 𝑝 〉 ∨ 𝑟 Btwn 〈 𝑝 , 𝑞 〉 ) ) } |
2 |
|
df-colinear |
⊢ Colinear = ◡ { 〈 〈 𝑞 , 𝑟 〉 , 𝑝 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn 〈 𝑞 , 𝑟 〉 ∨ 𝑞 Btwn 〈 𝑟 , 𝑝 〉 ∨ 𝑟 Btwn 〈 𝑝 , 𝑞 〉 ) ) } |
3 |
2
|
releqi |
⊢ ( Rel Colinear ↔ Rel ◡ { 〈 〈 𝑞 , 𝑟 〉 , 𝑝 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn 〈 𝑞 , 𝑟 〉 ∨ 𝑞 Btwn 〈 𝑟 , 𝑝 〉 ∨ 𝑟 Btwn 〈 𝑝 , 𝑞 〉 ) ) } ) |
4 |
1 3
|
mpbir |
⊢ Rel Colinear |