Metamath Proof Explorer


Definition df-colinear

Description: The colinearity predicate states that the three points in its arguments sit on one line. Definition 4.10 of Schwabhauser p. 36. (Contributed by Scott Fenton, 25-Oct-2013)

Ref Expression
Assertion df-colinear Colinear = { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccolin Colinear
1 vb 𝑏
2 vc 𝑐
3 va 𝑎
4 vn 𝑛
5 cn
6 3 cv 𝑎
7 cee 𝔼
8 4 cv 𝑛
9 8 7 cfv ( 𝔼 ‘ 𝑛 )
10 6 9 wcel 𝑎 ∈ ( 𝔼 ‘ 𝑛 )
11 1 cv 𝑏
12 11 9 wcel 𝑏 ∈ ( 𝔼 ‘ 𝑛 )
13 2 cv 𝑐
14 13 9 wcel 𝑐 ∈ ( 𝔼 ‘ 𝑛 )
15 10 12 14 w3a ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) )
16 cbtwn Btwn
17 11 13 cop 𝑏 , 𝑐
18 6 17 16 wbr 𝑎 Btwn ⟨ 𝑏 , 𝑐
19 13 6 cop 𝑐 , 𝑎
20 11 19 16 wbr 𝑏 Btwn ⟨ 𝑐 , 𝑎
21 6 11 cop 𝑎 , 𝑏
22 13 21 16 wbr 𝑐 Btwn ⟨ 𝑎 , 𝑏
23 18 20 22 w3o ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ )
24 15 23 wa ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) )
25 24 4 5 wrex 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) )
26 25 1 2 3 coprab { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) }
27 26 ccnv { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) }
28 0 27 wceq Colinear = { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) }