Step |
Hyp |
Ref |
Expression |
0 |
|
ccolin |
|- Colinear |
1 |
|
vb |
|- b |
2 |
|
vc |
|- c |
3 |
|
va |
|- a |
4 |
|
vn |
|- n |
5 |
|
cn |
|- NN |
6 |
3
|
cv |
|- a |
7 |
|
cee |
|- EE |
8 |
4
|
cv |
|- n |
9 |
8 7
|
cfv |
|- ( EE ` n ) |
10 |
6 9
|
wcel |
|- a e. ( EE ` n ) |
11 |
1
|
cv |
|- b |
12 |
11 9
|
wcel |
|- b e. ( EE ` n ) |
13 |
2
|
cv |
|- c |
14 |
13 9
|
wcel |
|- c e. ( EE ` n ) |
15 |
10 12 14
|
w3a |
|- ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) |
16 |
|
cbtwn |
|- Btwn |
17 |
11 13
|
cop |
|- <. b , c >. |
18 |
6 17 16
|
wbr |
|- a Btwn <. b , c >. |
19 |
13 6
|
cop |
|- <. c , a >. |
20 |
11 19 16
|
wbr |
|- b Btwn <. c , a >. |
21 |
6 11
|
cop |
|- <. a , b >. |
22 |
13 21 16
|
wbr |
|- c Btwn <. a , b >. |
23 |
18 20 22
|
w3o |
|- ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) |
24 |
15 23
|
wa |
|- ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) |
25 |
24 4 5
|
wrex |
|- E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) |
26 |
25 1 2 3
|
coprab |
|- { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } |
27 |
26
|
ccnv |
|- `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } |
28 |
0 27
|
wceq |
|- Colinear = `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } |