| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccolin |
|- Colinear |
| 1 |
|
vb |
|- b |
| 2 |
|
vc |
|- c |
| 3 |
|
va |
|- a |
| 4 |
|
vn |
|- n |
| 5 |
|
cn |
|- NN |
| 6 |
3
|
cv |
|- a |
| 7 |
|
cee |
|- EE |
| 8 |
4
|
cv |
|- n |
| 9 |
8 7
|
cfv |
|- ( EE ` n ) |
| 10 |
6 9
|
wcel |
|- a e. ( EE ` n ) |
| 11 |
1
|
cv |
|- b |
| 12 |
11 9
|
wcel |
|- b e. ( EE ` n ) |
| 13 |
2
|
cv |
|- c |
| 14 |
13 9
|
wcel |
|- c e. ( EE ` n ) |
| 15 |
10 12 14
|
w3a |
|- ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) |
| 16 |
|
cbtwn |
|- Btwn |
| 17 |
11 13
|
cop |
|- <. b , c >. |
| 18 |
6 17 16
|
wbr |
|- a Btwn <. b , c >. |
| 19 |
13 6
|
cop |
|- <. c , a >. |
| 20 |
11 19 16
|
wbr |
|- b Btwn <. c , a >. |
| 21 |
6 11
|
cop |
|- <. a , b >. |
| 22 |
13 21 16
|
wbr |
|- c Btwn <. a , b >. |
| 23 |
18 20 22
|
w3o |
|- ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) |
| 24 |
15 23
|
wa |
|- ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) |
| 25 |
24 4 5
|
wrex |
|- E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) |
| 26 |
25 1 2 3
|
coprab |
|- { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } |
| 27 |
26
|
ccnv |
|- `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } |
| 28 |
0 27
|
wceq |
|- Colinear = `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } |