| 1 |  | relcnv |  |-  Rel `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } | 
						
							| 2 |  | df-colinear |  |-  Colinear = `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } | 
						
							| 3 | 2 | releqi |  |-  ( Rel Colinear <-> Rel `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } ) |