Step |
Hyp |
Ref |
Expression |
1 |
|
colinrel |
|- Rel Colinear |
2 |
1
|
brrelex1i |
|- ( P Colinear <. Q , R >. -> P e. _V ) |
3 |
2
|
a1i |
|- ( ( Q e. V /\ R e. W ) -> ( P Colinear <. Q , R >. -> P e. _V ) ) |
4 |
|
elex |
|- ( P e. ( EE ` n ) -> P e. _V ) |
5 |
4
|
3ad2ant1 |
|- ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) -> P e. _V ) |
6 |
5
|
adantr |
|- ( ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) -> P e. _V ) |
7 |
6
|
rexlimivw |
|- ( E. n e. NN ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) -> P e. _V ) |
8 |
7
|
a1i |
|- ( ( Q e. V /\ R e. W ) -> ( E. n e. NN ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) -> P e. _V ) ) |
9 |
|
df-br |
|- ( P Colinear <. Q , R >. <-> <. P , <. Q , R >. >. e. Colinear ) |
10 |
|
df-colinear |
|- Colinear = `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } |
11 |
10
|
eleq2i |
|- ( <. P , <. Q , R >. >. e. Colinear <-> <. P , <. Q , R >. >. e. `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } ) |
12 |
9 11
|
bitri |
|- ( P Colinear <. Q , R >. <-> <. P , <. Q , R >. >. e. `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } ) |
13 |
|
opex |
|- <. Q , R >. e. _V |
14 |
|
opelcnvg |
|- ( ( P e. _V /\ <. Q , R >. e. _V ) -> ( <. P , <. Q , R >. >. e. `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } <-> <. <. Q , R >. , P >. e. { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } ) ) |
15 |
13 14
|
mpan2 |
|- ( P e. _V -> ( <. P , <. Q , R >. >. e. `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } <-> <. <. Q , R >. , P >. e. { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } ) ) |
16 |
15
|
3ad2ant3 |
|- ( ( Q e. V /\ R e. W /\ P e. _V ) -> ( <. P , <. Q , R >. >. e. `' { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } <-> <. <. Q , R >. , P >. e. { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } ) ) |
17 |
12 16
|
syl5bb |
|- ( ( Q e. V /\ R e. W /\ P e. _V ) -> ( P Colinear <. Q , R >. <-> <. <. Q , R >. , P >. e. { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } ) ) |
18 |
|
eleq1 |
|- ( q = Q -> ( q e. ( EE ` n ) <-> Q e. ( EE ` n ) ) ) |
19 |
18
|
3anbi2d |
|- ( q = Q -> ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) <-> ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ r e. ( EE ` n ) ) ) ) |
20 |
|
opeq1 |
|- ( q = Q -> <. q , r >. = <. Q , r >. ) |
21 |
20
|
breq2d |
|- ( q = Q -> ( p Btwn <. q , r >. <-> p Btwn <. Q , r >. ) ) |
22 |
|
breq1 |
|- ( q = Q -> ( q Btwn <. r , p >. <-> Q Btwn <. r , p >. ) ) |
23 |
|
opeq2 |
|- ( q = Q -> <. p , q >. = <. p , Q >. ) |
24 |
23
|
breq2d |
|- ( q = Q -> ( r Btwn <. p , q >. <-> r Btwn <. p , Q >. ) ) |
25 |
21 22 24
|
3orbi123d |
|- ( q = Q -> ( ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) <-> ( p Btwn <. Q , r >. \/ Q Btwn <. r , p >. \/ r Btwn <. p , Q >. ) ) ) |
26 |
19 25
|
anbi12d |
|- ( q = Q -> ( ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) <-> ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. Q , r >. \/ Q Btwn <. r , p >. \/ r Btwn <. p , Q >. ) ) ) ) |
27 |
26
|
rexbidv |
|- ( q = Q -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) <-> E. n e. NN ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. Q , r >. \/ Q Btwn <. r , p >. \/ r Btwn <. p , Q >. ) ) ) ) |
28 |
|
eleq1 |
|- ( r = R -> ( r e. ( EE ` n ) <-> R e. ( EE ` n ) ) ) |
29 |
28
|
3anbi3d |
|- ( r = R -> ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ r e. ( EE ` n ) ) <-> ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) ) ) |
30 |
|
opeq2 |
|- ( r = R -> <. Q , r >. = <. Q , R >. ) |
31 |
30
|
breq2d |
|- ( r = R -> ( p Btwn <. Q , r >. <-> p Btwn <. Q , R >. ) ) |
32 |
|
opeq1 |
|- ( r = R -> <. r , p >. = <. R , p >. ) |
33 |
32
|
breq2d |
|- ( r = R -> ( Q Btwn <. r , p >. <-> Q Btwn <. R , p >. ) ) |
34 |
|
breq1 |
|- ( r = R -> ( r Btwn <. p , Q >. <-> R Btwn <. p , Q >. ) ) |
35 |
31 33 34
|
3orbi123d |
|- ( r = R -> ( ( p Btwn <. Q , r >. \/ Q Btwn <. r , p >. \/ r Btwn <. p , Q >. ) <-> ( p Btwn <. Q , R >. \/ Q Btwn <. R , p >. \/ R Btwn <. p , Q >. ) ) ) |
36 |
29 35
|
anbi12d |
|- ( r = R -> ( ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. Q , r >. \/ Q Btwn <. r , p >. \/ r Btwn <. p , Q >. ) ) <-> ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( p Btwn <. Q , R >. \/ Q Btwn <. R , p >. \/ R Btwn <. p , Q >. ) ) ) ) |
37 |
36
|
rexbidv |
|- ( r = R -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. Q , r >. \/ Q Btwn <. r , p >. \/ r Btwn <. p , Q >. ) ) <-> E. n e. NN ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( p Btwn <. Q , R >. \/ Q Btwn <. R , p >. \/ R Btwn <. p , Q >. ) ) ) ) |
38 |
|
eleq1 |
|- ( p = P -> ( p e. ( EE ` n ) <-> P e. ( EE ` n ) ) ) |
39 |
38
|
3anbi1d |
|- ( p = P -> ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) <-> ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) ) ) |
40 |
|
breq1 |
|- ( p = P -> ( p Btwn <. Q , R >. <-> P Btwn <. Q , R >. ) ) |
41 |
|
opeq2 |
|- ( p = P -> <. R , p >. = <. R , P >. ) |
42 |
41
|
breq2d |
|- ( p = P -> ( Q Btwn <. R , p >. <-> Q Btwn <. R , P >. ) ) |
43 |
|
opeq1 |
|- ( p = P -> <. p , Q >. = <. P , Q >. ) |
44 |
43
|
breq2d |
|- ( p = P -> ( R Btwn <. p , Q >. <-> R Btwn <. P , Q >. ) ) |
45 |
40 42 44
|
3orbi123d |
|- ( p = P -> ( ( p Btwn <. Q , R >. \/ Q Btwn <. R , p >. \/ R Btwn <. p , Q >. ) <-> ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) ) |
46 |
39 45
|
anbi12d |
|- ( p = P -> ( ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( p Btwn <. Q , R >. \/ Q Btwn <. R , p >. \/ R Btwn <. p , Q >. ) ) <-> ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) ) ) |
47 |
46
|
rexbidv |
|- ( p = P -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( p Btwn <. Q , R >. \/ Q Btwn <. R , p >. \/ R Btwn <. p , Q >. ) ) <-> E. n e. NN ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) ) ) |
48 |
27 37 47
|
eloprabg |
|- ( ( Q e. V /\ R e. W /\ P e. _V ) -> ( <. <. Q , R >. , P >. e. { <. <. q , r >. , p >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ r e. ( EE ` n ) ) /\ ( p Btwn <. q , r >. \/ q Btwn <. r , p >. \/ r Btwn <. p , q >. ) ) } <-> E. n e. NN ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) ) ) |
49 |
17 48
|
bitrd |
|- ( ( Q e. V /\ R e. W /\ P e. _V ) -> ( P Colinear <. Q , R >. <-> E. n e. NN ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) ) ) |
50 |
49
|
3expia |
|- ( ( Q e. V /\ R e. W ) -> ( P e. _V -> ( P Colinear <. Q , R >. <-> E. n e. NN ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) ) ) ) |
51 |
3 8 50
|
pm5.21ndd |
|- ( ( Q e. V /\ R e. W ) -> ( P Colinear <. Q , R >. <-> E. n e. NN ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ R e. ( EE ` n ) ) /\ ( P Btwn <. Q , R >. \/ Q Btwn <. R , P >. \/ R Btwn <. P , Q >. ) ) ) ) |