Step |
Hyp |
Ref |
Expression |
1 |
|
brcolinear2 |
|- ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A Colinear <. B , C >. <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
2 |
1
|
3adant1 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A Colinear <. B , C >. <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
3 |
2
|
adantl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
4 |
|
simpr |
|- ( ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) -> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) |
5 |
4
|
rexlimivw |
|- ( E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) -> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) |
6 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
7 |
6
|
eleq2d |
|- ( n = N -> ( A e. ( EE ` n ) <-> A e. ( EE ` N ) ) ) |
8 |
6
|
eleq2d |
|- ( n = N -> ( B e. ( EE ` n ) <-> B e. ( EE ` N ) ) ) |
9 |
6
|
eleq2d |
|- ( n = N -> ( C e. ( EE ` n ) <-> C e. ( EE ` N ) ) ) |
10 |
7 8 9
|
3anbi123d |
|- ( n = N -> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) ) |
11 |
10
|
anbi1d |
|- ( n = N -> ( ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) <-> ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
12 |
11
|
rspcev |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) -> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |
13 |
12
|
expr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) -> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
14 |
5 13
|
impbid2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |
15 |
3 14
|
bitrd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |