| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-colinear |
|- Colinear = `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } |
| 2 |
|
nnex |
|- NN e. _V |
| 3 |
|
fvex |
|- ( EE ` n ) e. _V |
| 4 |
3 3
|
xpex |
|- ( ( EE ` n ) X. ( EE ` n ) ) e. _V |
| 5 |
4 3
|
xpex |
|- ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) e. _V |
| 6 |
2 5
|
iunex |
|- U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) e. _V |
| 7 |
|
df-oprab |
|- { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } = { x | E. b E. c E. a ( x = <. <. b , c >. , a >. /\ E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) ) } |
| 8 |
|
opelxpi |
|- ( ( b e. ( EE ` n ) /\ c e. ( EE ` n ) ) -> <. b , c >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) |
| 9 |
8
|
3adant1 |
|- ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) -> <. b , c >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) |
| 10 |
|
simp1 |
|- ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) -> a e. ( EE ` n ) ) |
| 11 |
|
opelxpi |
|- ( ( <. b , c >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ a e. ( EE ` n ) ) -> <. <. b , c >. , a >. e. ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 12 |
9 10 11
|
syl2anc |
|- ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) -> <. <. b , c >. , a >. e. ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 13 |
12
|
adantr |
|- ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) -> <. <. b , c >. , a >. e. ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 14 |
13
|
reximi |
|- ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) -> E. n e. NN <. <. b , c >. , a >. e. ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 15 |
|
eliun |
|- ( <. <. b , c >. , a >. e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) <-> E. n e. NN <. <. b , c >. , a >. e. ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 16 |
14 15
|
sylibr |
|- ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) -> <. <. b , c >. , a >. e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 17 |
|
eleq1 |
|- ( x = <. <. b , c >. , a >. -> ( x e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) <-> <. <. b , c >. , a >. e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) ) |
| 18 |
17
|
biimpar |
|- ( ( x = <. <. b , c >. , a >. /\ <. <. b , c >. , a >. e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) -> x e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 19 |
16 18
|
sylan2 |
|- ( ( x = <. <. b , c >. , a >. /\ E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) ) -> x e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 20 |
19
|
exlimiv |
|- ( E. a ( x = <. <. b , c >. , a >. /\ E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) ) -> x e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 21 |
20
|
exlimivv |
|- ( E. b E. c E. a ( x = <. <. b , c >. , a >. /\ E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) ) -> x e. U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) ) |
| 22 |
21
|
abssi |
|- { x | E. b E. c E. a ( x = <. <. b , c >. , a >. /\ E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) ) } C_ U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) |
| 23 |
7 22
|
eqsstri |
|- { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } C_ U_ n e. NN ( ( ( EE ` n ) X. ( EE ` n ) ) X. ( EE ` n ) ) |
| 24 |
6 23
|
ssexi |
|- { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } e. _V |
| 25 |
24
|
cnvex |
|- `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } e. _V |
| 26 |
1 25
|
eqeltri |
|- Colinear e. _V |