| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-colinear |  |-  Colinear = `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } | 
						
							| 2 | 1 | breqi |  |-  ( A Colinear <. B , C >. <-> A `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <. B , C >. ) | 
						
							| 3 |  | simpr1 |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> A e. V ) | 
						
							| 4 |  | opex |  |-  <. B , C >. e. _V | 
						
							| 5 |  | brcnvg |  |-  ( ( A e. V /\ <. B , C >. e. _V ) -> ( A `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <. B , C >. <-> <. B , C >. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } A ) ) | 
						
							| 6 | 3 4 5 | sylancl |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( A `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <. B , C >. <-> <. B , C >. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } A ) ) | 
						
							| 7 |  | df-br |  |-  ( <. B , C >. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } A <-> <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } ) | 
						
							| 8 |  | eleq1 |  |-  ( b = B -> ( b e. ( EE ` n ) <-> B e. ( EE ` n ) ) ) | 
						
							| 9 | 8 | 3anbi2d |  |-  ( b = B -> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) <-> ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) ) ) | 
						
							| 10 |  | opeq1 |  |-  ( b = B -> <. b , c >. = <. B , c >. ) | 
						
							| 11 | 10 | breq2d |  |-  ( b = B -> ( a Btwn <. b , c >. <-> a Btwn <. B , c >. ) ) | 
						
							| 12 |  | breq1 |  |-  ( b = B -> ( b Btwn <. c , a >. <-> B Btwn <. c , a >. ) ) | 
						
							| 13 |  | opeq2 |  |-  ( b = B -> <. a , b >. = <. a , B >. ) | 
						
							| 14 | 13 | breq2d |  |-  ( b = B -> ( c Btwn <. a , b >. <-> c Btwn <. a , B >. ) ) | 
						
							| 15 | 11 12 14 | 3orbi123d |  |-  ( b = B -> ( ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) <-> ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) ) | 
						
							| 16 | 9 15 | anbi12d |  |-  ( b = B -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) <-> ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) ) ) | 
						
							| 17 | 16 | rexbidv |  |-  ( b = B -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) <-> E. n e. NN ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) ) ) | 
						
							| 18 |  | eleq1 |  |-  ( c = C -> ( c e. ( EE ` n ) <-> C e. ( EE ` n ) ) ) | 
						
							| 19 | 18 | 3anbi3d |  |-  ( c = C -> ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) <-> ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) ) | 
						
							| 20 |  | opeq2 |  |-  ( c = C -> <. B , c >. = <. B , C >. ) | 
						
							| 21 | 20 | breq2d |  |-  ( c = C -> ( a Btwn <. B , c >. <-> a Btwn <. B , C >. ) ) | 
						
							| 22 |  | opeq1 |  |-  ( c = C -> <. c , a >. = <. C , a >. ) | 
						
							| 23 | 22 | breq2d |  |-  ( c = C -> ( B Btwn <. c , a >. <-> B Btwn <. C , a >. ) ) | 
						
							| 24 |  | breq1 |  |-  ( c = C -> ( c Btwn <. a , B >. <-> C Btwn <. a , B >. ) ) | 
						
							| 25 | 21 23 24 | 3orbi123d |  |-  ( c = C -> ( ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) <-> ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) ) | 
						
							| 26 | 19 25 | anbi12d |  |-  ( c = C -> ( ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) <-> ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) ) ) | 
						
							| 27 | 26 | rexbidv |  |-  ( c = C -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) <-> E. n e. NN ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) ) ) | 
						
							| 28 |  | eleq1 |  |-  ( a = A -> ( a e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) | 
						
							| 29 | 28 | 3anbi1d |  |-  ( a = A -> ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) <-> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) ) | 
						
							| 30 |  | breq1 |  |-  ( a = A -> ( a Btwn <. B , C >. <-> A Btwn <. B , C >. ) ) | 
						
							| 31 |  | opeq2 |  |-  ( a = A -> <. C , a >. = <. C , A >. ) | 
						
							| 32 | 31 | breq2d |  |-  ( a = A -> ( B Btwn <. C , a >. <-> B Btwn <. C , A >. ) ) | 
						
							| 33 |  | opeq1 |  |-  ( a = A -> <. a , B >. = <. A , B >. ) | 
						
							| 34 | 33 | breq2d |  |-  ( a = A -> ( C Btwn <. a , B >. <-> C Btwn <. A , B >. ) ) | 
						
							| 35 | 30 32 34 | 3orbi123d |  |-  ( a = A -> ( ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 36 | 29 35 | anbi12d |  |-  ( a = A -> ( ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) <-> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) | 
						
							| 37 | 36 | rexbidv |  |-  ( a = A -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) | 
						
							| 38 | 17 27 37 | eloprabg |  |-  ( ( B e. ( EE ` N ) /\ C e. W /\ A e. V ) -> ( <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) | 
						
							| 39 | 38 | 3comr |  |-  ( ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) -> ( <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) | 
						
							| 41 |  | simpl |  |-  ( ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) -> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) | 
						
							| 42 |  | simp2 |  |-  ( ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) -> B e. ( EE ` N ) ) | 
						
							| 43 | 42 | anim2i |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( N e. NN /\ B e. ( EE ` N ) ) ) | 
						
							| 44 |  | 3simpa |  |-  ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) -> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) | 
						
							| 45 | 44 | anim2i |  |-  ( ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) -> ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) | 
						
							| 46 |  | axdimuniq |  |-  ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ B e. ( EE ` n ) ) ) -> N = n ) | 
						
							| 47 | 46 | adantrrl |  |-  ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) -> N = n ) | 
						
							| 48 |  | simprrl |  |-  ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) -> A e. ( EE ` n ) ) | 
						
							| 49 |  | fveq2 |  |-  ( N = n -> ( EE ` N ) = ( EE ` n ) ) | 
						
							| 50 | 49 | eleq2d |  |-  ( N = n -> ( A e. ( EE ` N ) <-> A e. ( EE ` n ) ) ) | 
						
							| 51 | 48 50 | syl5ibrcom |  |-  ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) -> ( N = n -> A e. ( EE ` N ) ) ) | 
						
							| 52 | 47 51 | mpd |  |-  ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 53 | 43 45 52 | syl2an |  |-  ( ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 54 | 53 | exp32 |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( n e. NN -> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) -> A e. ( EE ` N ) ) ) ) | 
						
							| 55 | 41 54 | syl7 |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( n e. NN -> ( ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) -> A e. ( EE ` N ) ) ) ) | 
						
							| 56 | 55 | rexlimdv |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) -> A e. ( EE ` N ) ) ) | 
						
							| 57 | 40 56 | sylbid |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } -> A e. ( EE ` N ) ) ) | 
						
							| 58 | 7 57 | biimtrid |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( <. B , C >. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } A -> A e. ( EE ` N ) ) ) | 
						
							| 59 | 6 58 | sylbid |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( A `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <. B , C >. -> A e. ( EE ` N ) ) ) | 
						
							| 60 | 2 59 | biimtrid |  |-  ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( A Colinear <. B , C >. -> A e. ( EE ` N ) ) ) |