| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-colinear |
|- Colinear = `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } |
| 2 |
1
|
breqi |
|- ( A Colinear <. B , C >. <-> A `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <. B , C >. ) |
| 3 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> A e. V ) |
| 4 |
|
opex |
|- <. B , C >. e. _V |
| 5 |
|
brcnvg |
|- ( ( A e. V /\ <. B , C >. e. _V ) -> ( A `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <. B , C >. <-> <. B , C >. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } A ) ) |
| 6 |
3 4 5
|
sylancl |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( A `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <. B , C >. <-> <. B , C >. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } A ) ) |
| 7 |
|
df-br |
|- ( <. B , C >. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } A <-> <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } ) |
| 8 |
|
eleq1 |
|- ( b = B -> ( b e. ( EE ` n ) <-> B e. ( EE ` n ) ) ) |
| 9 |
8
|
3anbi2d |
|- ( b = B -> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) <-> ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) ) ) |
| 10 |
|
opeq1 |
|- ( b = B -> <. b , c >. = <. B , c >. ) |
| 11 |
10
|
breq2d |
|- ( b = B -> ( a Btwn <. b , c >. <-> a Btwn <. B , c >. ) ) |
| 12 |
|
breq1 |
|- ( b = B -> ( b Btwn <. c , a >. <-> B Btwn <. c , a >. ) ) |
| 13 |
|
opeq2 |
|- ( b = B -> <. a , b >. = <. a , B >. ) |
| 14 |
13
|
breq2d |
|- ( b = B -> ( c Btwn <. a , b >. <-> c Btwn <. a , B >. ) ) |
| 15 |
11 12 14
|
3orbi123d |
|- ( b = B -> ( ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) <-> ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) ) |
| 16 |
9 15
|
anbi12d |
|- ( b = B -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) <-> ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) ) ) |
| 17 |
16
|
rexbidv |
|- ( b = B -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) <-> E. n e. NN ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) ) ) |
| 18 |
|
eleq1 |
|- ( c = C -> ( c e. ( EE ` n ) <-> C e. ( EE ` n ) ) ) |
| 19 |
18
|
3anbi3d |
|- ( c = C -> ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) <-> ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) ) |
| 20 |
|
opeq2 |
|- ( c = C -> <. B , c >. = <. B , C >. ) |
| 21 |
20
|
breq2d |
|- ( c = C -> ( a Btwn <. B , c >. <-> a Btwn <. B , C >. ) ) |
| 22 |
|
opeq1 |
|- ( c = C -> <. c , a >. = <. C , a >. ) |
| 23 |
22
|
breq2d |
|- ( c = C -> ( B Btwn <. c , a >. <-> B Btwn <. C , a >. ) ) |
| 24 |
|
breq1 |
|- ( c = C -> ( c Btwn <. a , B >. <-> C Btwn <. a , B >. ) ) |
| 25 |
21 23 24
|
3orbi123d |
|- ( c = C -> ( ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) <-> ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) ) |
| 26 |
19 25
|
anbi12d |
|- ( c = C -> ( ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) <-> ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) ) ) |
| 27 |
26
|
rexbidv |
|- ( c = C -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. B , c >. \/ B Btwn <. c , a >. \/ c Btwn <. a , B >. ) ) <-> E. n e. NN ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) ) ) |
| 28 |
|
eleq1 |
|- ( a = A -> ( a e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) |
| 29 |
28
|
3anbi1d |
|- ( a = A -> ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) <-> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) ) |
| 30 |
|
breq1 |
|- ( a = A -> ( a Btwn <. B , C >. <-> A Btwn <. B , C >. ) ) |
| 31 |
|
opeq2 |
|- ( a = A -> <. C , a >. = <. C , A >. ) |
| 32 |
31
|
breq2d |
|- ( a = A -> ( B Btwn <. C , a >. <-> B Btwn <. C , A >. ) ) |
| 33 |
|
opeq1 |
|- ( a = A -> <. a , B >. = <. A , B >. ) |
| 34 |
33
|
breq2d |
|- ( a = A -> ( C Btwn <. a , B >. <-> C Btwn <. A , B >. ) ) |
| 35 |
30 32 34
|
3orbi123d |
|- ( a = A -> ( ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |
| 36 |
29 35
|
anbi12d |
|- ( a = A -> ( ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) <-> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
| 37 |
36
|
rexbidv |
|- ( a = A -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( a Btwn <. B , C >. \/ B Btwn <. C , a >. \/ C Btwn <. a , B >. ) ) <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
| 38 |
17 27 37
|
eloprabg |
|- ( ( B e. ( EE ` N ) /\ C e. W /\ A e. V ) -> ( <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
| 39 |
38
|
3comr |
|- ( ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) -> ( <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
| 40 |
39
|
adantl |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) ) |
| 41 |
|
simpl |
|- ( ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) -> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) |
| 42 |
|
simp2 |
|- ( ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) -> B e. ( EE ` N ) ) |
| 43 |
42
|
anim2i |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( N e. NN /\ B e. ( EE ` N ) ) ) |
| 44 |
|
3simpa |
|- ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) -> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) |
| 45 |
44
|
anim2i |
|- ( ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) -> ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) |
| 46 |
|
axdimuniq |
|- ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ B e. ( EE ` n ) ) ) -> N = n ) |
| 47 |
46
|
adantrrl |
|- ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) -> N = n ) |
| 48 |
|
simprrl |
|- ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) -> A e. ( EE ` n ) ) |
| 49 |
|
fveq2 |
|- ( N = n -> ( EE ` N ) = ( EE ` n ) ) |
| 50 |
49
|
eleq2d |
|- ( N = n -> ( A e. ( EE ` N ) <-> A e. ( EE ` n ) ) ) |
| 51 |
48 50
|
syl5ibrcom |
|- ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) -> ( N = n -> A e. ( EE ` N ) ) ) |
| 52 |
47 51
|
mpd |
|- ( ( ( N e. NN /\ B e. ( EE ` N ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) -> A e. ( EE ` N ) ) |
| 53 |
43 45 52
|
syl2an |
|- ( ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) /\ ( n e. NN /\ ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) ) ) -> A e. ( EE ` N ) ) |
| 54 |
53
|
exp32 |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( n e. NN -> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) -> A e. ( EE ` N ) ) ) ) |
| 55 |
41 54
|
syl7 |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( n e. NN -> ( ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) -> A e. ( EE ` N ) ) ) ) |
| 56 |
55
|
rexlimdv |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ C e. ( EE ` n ) ) /\ ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) -> A e. ( EE ` N ) ) ) |
| 57 |
40 56
|
sylbid |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( <. <. B , C >. , A >. e. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } -> A e. ( EE ` N ) ) ) |
| 58 |
7 57
|
biimtrid |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( <. B , C >. { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } A -> A e. ( EE ` N ) ) ) |
| 59 |
6 58
|
sylbid |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( A `' { <. <. b , c >. , a >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ c e. ( EE ` n ) ) /\ ( a Btwn <. b , c >. \/ b Btwn <. c , a >. \/ c Btwn <. a , b >. ) ) } <. B , C >. -> A e. ( EE ` N ) ) ) |
| 60 |
2 59
|
biimtrid |
|- ( ( N e. NN /\ ( A e. V /\ B e. ( EE ` N ) /\ C e. W ) ) -> ( A Colinear <. B , C >. -> A e. ( EE ` N ) ) ) |