| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwncom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. <-> A Btwn <. C , B >. ) ) | 
						
							| 2 |  | 3anrot |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 3 |  | btwncom |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. <-> B Btwn <. A , C >. ) ) | 
						
							| 4 | 2 3 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. <-> B Btwn <. A , C >. ) ) | 
						
							| 5 |  | 3anrot |  |-  ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 6 |  | btwncom |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. <-> C Btwn <. B , A >. ) ) | 
						
							| 7 | 5 6 | sylan2br |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. <-> C Btwn <. B , A >. ) ) | 
						
							| 8 | 1 4 7 | 3orbi123d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) <-> ( A Btwn <. C , B >. \/ B Btwn <. A , C >. \/ C Btwn <. B , A >. ) ) ) | 
						
							| 9 |  | 3orcomb |  |-  ( ( A Btwn <. C , B >. \/ B Btwn <. A , C >. \/ C Btwn <. B , A >. ) <-> ( A Btwn <. C , B >. \/ C Btwn <. B , A >. \/ B Btwn <. A , C >. ) ) | 
						
							| 10 | 8 9 | bitrdi |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) <-> ( A Btwn <. C , B >. \/ C Btwn <. B , A >. \/ B Btwn <. A , C >. ) ) ) | 
						
							| 11 |  | brcolinear |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 12 |  | 3ancomb |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 13 |  | brcolinear |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Colinear <. C , B >. <-> ( A Btwn <. C , B >. \/ C Btwn <. B , A >. \/ B Btwn <. A , C >. ) ) ) | 
						
							| 14 | 12 13 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. C , B >. <-> ( A Btwn <. C , B >. \/ C Btwn <. B , A >. \/ B Btwn <. A , C >. ) ) ) | 
						
							| 15 | 10 11 14 | 3bitr4d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> A Colinear <. C , B >. ) ) |