| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3orrot |  |-  ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) <-> ( B Btwn <. C , A >. \/ C Btwn <. A , B >. \/ A Btwn <. B , C >. ) ) | 
						
							| 2 | 1 | a1i |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) <-> ( B Btwn <. C , A >. \/ C Btwn <. A , B >. \/ A Btwn <. B , C >. ) ) ) | 
						
							| 3 |  | brcolinear |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 4 |  | 3anrot |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 5 |  | brcolinear |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Colinear <. C , A >. <-> ( B Btwn <. C , A >. \/ C Btwn <. A , B >. \/ A Btwn <. B , C >. ) ) ) | 
						
							| 6 | 4 5 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Colinear <. C , A >. <-> ( B Btwn <. C , A >. \/ C Btwn <. A , B >. \/ A Btwn <. B , C >. ) ) ) | 
						
							| 7 | 2 3 6 | 3bitr4d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> B Colinear <. C , A >. ) ) |