Step |
Hyp |
Ref |
Expression |
1 |
|
3orrot |
|- ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) <-> ( B Btwn <. C , A >. \/ C Btwn <. A , B >. \/ A Btwn <. B , C >. ) ) |
2 |
1
|
a1i |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) <-> ( B Btwn <. C , A >. \/ C Btwn <. A , B >. \/ A Btwn <. B , C >. ) ) ) |
3 |
|
brcolinear |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |
4 |
|
3anrot |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
5 |
|
brcolinear |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Colinear <. C , A >. <-> ( B Btwn <. C , A >. \/ C Btwn <. A , B >. \/ A Btwn <. B , C >. ) ) ) |
6 |
4 5
|
sylan2b |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Colinear <. C , A >. <-> ( B Btwn <. C , A >. \/ C Btwn <. A , B >. \/ A Btwn <. B , C >. ) ) ) |
7 |
2 3 6
|
3bitr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> B Colinear <. C , A >. ) ) |