| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3orrot |
⊢ ( ( 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ∨ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ∨ 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ) ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ∨ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ∨ 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ) ) ) |
| 3 |
|
brcolinear |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ∨ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ) ) ) |
| 4 |
|
3anrot |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 5 |
|
brcolinear |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Colinear 〈 𝐶 , 𝐴 〉 ↔ ( 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ∨ 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ) ) ) |
| 6 |
4 5
|
sylan2b |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Colinear 〈 𝐶 , 𝐴 〉 ↔ ( 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ∨ 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ) ) ) |
| 7 |
2 3 6
|
3bitr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear 〈 𝐵 , 𝐶 〉 ↔ 𝐵 Colinear 〈 𝐶 , 𝐴 〉 ) ) |