| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colinearperm3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> B Colinear <. C , A >. ) ) | 
						
							| 2 |  | 3anrot |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 3 |  | colinearperm1 |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Colinear <. C , A >. <-> B Colinear <. A , C >. ) ) | 
						
							| 4 | 2 3 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Colinear <. C , A >. <-> B Colinear <. A , C >. ) ) | 
						
							| 5 | 1 4 | bitrd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> B Colinear <. A , C >. ) ) |