Metamath Proof Explorer


Theorem colinearperm1

Description: Permutation law for colinearity. Part of theorem 4.11 of Schwabhauser p. 36. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion colinearperm1 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Colinear ⟨ 𝐶 , 𝐵 ⟩ ) )

Proof

Step Hyp Ref Expression
1 btwncom ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ) )
2 3anrot ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) )
3 btwncom ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ↔ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) )
4 2 3 sylan2b ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ↔ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) )
5 3anrot ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) )
6 btwncom ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) )
7 5 6 sylan2br ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) )
8 1 4 7 3orbi123d ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) ) )
9 3orcomb ( ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) ↔ ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) )
10 8 9 bitrdi ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) ) )
11 brcolinear ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) )
12 3ancomb ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) )
13 brcolinear ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐶 , 𝐵 ⟩ ↔ ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) ) )
14 12 13 sylan2b ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐶 , 𝐵 ⟩ ↔ ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) ) )
15 10 11 14 3bitr4d ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Colinear ⟨ 𝐶 , 𝐵 ⟩ ) )