Metamath Proof Explorer


Theorem colinearex

Description: The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion colinearex ColinearV

Proof

Step Hyp Ref Expression
1 df-colinear Colinear=bca|na𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnab-1
2 nnex V
3 fvex 𝔼nV
4 3 3 xpex 𝔼n×𝔼nV
5 4 3 xpex 𝔼n×𝔼n×𝔼nV
6 2 5 iunex n𝔼n×𝔼n×𝔼nV
7 df-oprab bca|na𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnab=x|bcax=bcana𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnab
8 opelxpi b𝔼nc𝔼nbc𝔼n×𝔼n
9 8 3adant1 a𝔼nb𝔼nc𝔼nbc𝔼n×𝔼n
10 simp1 a𝔼nb𝔼nc𝔼na𝔼n
11 opelxpi bc𝔼n×𝔼na𝔼nbca𝔼n×𝔼n×𝔼n
12 9 10 11 syl2anc a𝔼nb𝔼nc𝔼nbca𝔼n×𝔼n×𝔼n
13 12 adantr a𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabbca𝔼n×𝔼n×𝔼n
14 13 reximi na𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabnbca𝔼n×𝔼n×𝔼n
15 eliun bcan𝔼n×𝔼n×𝔼nnbca𝔼n×𝔼n×𝔼n
16 14 15 sylibr na𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabbcan𝔼n×𝔼n×𝔼n
17 eleq1 x=bcaxn𝔼n×𝔼n×𝔼nbcan𝔼n×𝔼n×𝔼n
18 17 biimpar x=bcabcan𝔼n×𝔼n×𝔼nxn𝔼n×𝔼n×𝔼n
19 16 18 sylan2 x=bcana𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabxn𝔼n×𝔼n×𝔼n
20 19 exlimiv ax=bcana𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabxn𝔼n×𝔼n×𝔼n
21 20 exlimivv bcax=bcana𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabxn𝔼n×𝔼n×𝔼n
22 21 abssi x|bcax=bcana𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabn𝔼n×𝔼n×𝔼n
23 7 22 eqsstri bca|na𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabn𝔼n×𝔼n×𝔼n
24 6 23 ssexi bca|na𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnabV
25 24 cnvex bca|na𝔼nb𝔼nc𝔼naBtwnbcbBtwncacBtwnab-1V
26 1 25 eqeltri ColinearV