Step |
Hyp |
Ref |
Expression |
1 |
|
df-colinear |
⊢ Colinear = ◡ { 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) } |
2 |
|
nnex |
⊢ ℕ ∈ V |
3 |
|
fvex |
⊢ ( 𝔼 ‘ 𝑛 ) ∈ V |
4 |
3 3
|
xpex |
⊢ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∈ V |
5 |
4 3
|
xpex |
⊢ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ∈ V |
6 |
2 5
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ∈ V |
7 |
|
df-oprab |
⊢ { 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) } = { 𝑥 ∣ ∃ 𝑏 ∃ 𝑐 ∃ 𝑎 ( 𝑥 = 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) ) } |
8 |
|
opelxpi |
⊢ ( ( 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) → 〈 𝑏 , 𝑐 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) → 〈 𝑏 , 𝑐 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) |
10 |
|
simp1 |
⊢ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) → 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ) |
11 |
|
opelxpi |
⊢ ( ( 〈 𝑏 , 𝑐 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ) → 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) → 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) → 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
14 |
13
|
reximi |
⊢ ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) → ∃ 𝑛 ∈ ℕ 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
15 |
|
eliun |
⊢ ( 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕ 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
16 |
14 15
|
sylibr |
⊢ ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) → 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
17 |
|
eleq1 |
⊢ ( 𝑥 = 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 → ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) ) |
18 |
17
|
biimpar |
⊢ ( ( 𝑥 = 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∧ 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) → 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
19 |
16 18
|
sylan2 |
⊢ ( ( 𝑥 = 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) ) → 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
20 |
19
|
exlimiv |
⊢ ( ∃ 𝑎 ( 𝑥 = 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) ) → 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
21 |
20
|
exlimivv |
⊢ ( ∃ 𝑏 ∃ 𝑐 ∃ 𝑎 ( 𝑥 = 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) ) → 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) |
22 |
21
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑏 ∃ 𝑐 ∃ 𝑎 ( 𝑥 = 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) ) } ⊆ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) |
23 |
7 22
|
eqsstri |
⊢ { 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) } ⊆ ∪ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) |
24 |
6 23
|
ssexi |
⊢ { 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) } ∈ V |
25 |
24
|
cnvex |
⊢ ◡ { 〈 〈 𝑏 , 𝑐 〉 , 𝑎 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn 〈 𝑏 , 𝑐 〉 ∨ 𝑏 Btwn 〈 𝑐 , 𝑎 〉 ∨ 𝑐 Btwn 〈 𝑎 , 𝑏 〉 ) ) } ∈ V |
26 |
1 25
|
eqeltri |
⊢ Colinear ∈ V |