Metamath Proof Explorer


Theorem colinearex

Description: The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion colinearex Colinear ∈ V

Proof

Step Hyp Ref Expression
1 df-colinear Colinear = { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) }
2 nnex ℕ ∈ V
3 fvex ( 𝔼 ‘ 𝑛 ) ∈ V
4 3 3 xpex ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∈ V
5 4 3 xpex ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ∈ V
6 2 5 iunex 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ∈ V
7 df-oprab { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) } = { 𝑥 ∣ ∃ 𝑏𝑐𝑎 ( 𝑥 = ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) ) }
8 opelxpi ( ( 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) → ⟨ 𝑏 , 𝑐 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) )
9 8 3adant1 ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) → ⟨ 𝑏 , 𝑐 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) )
10 simp1 ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) → 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) )
11 opelxpi ( ( ⟨ 𝑏 , 𝑐 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ) → ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
12 9 10 11 syl2anc ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) → ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
13 12 adantr ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) → ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
14 13 reximi ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) → ∃ 𝑛 ∈ ℕ ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
15 eliun ( ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕ ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
16 14 15 sylibr ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) → ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
17 eleq1 ( 𝑥 = ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ → ( 𝑥 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) )
18 17 biimpar ( ( 𝑥 = ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∧ ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∈ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) ) → 𝑥 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
19 16 18 sylan2 ( ( 𝑥 = ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) ) → 𝑥 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
20 19 exlimiv ( ∃ 𝑎 ( 𝑥 = ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) ) → 𝑥 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
21 20 exlimivv ( ∃ 𝑏𝑐𝑎 ( 𝑥 = ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) ) → 𝑥 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) ) )
22 21 abssi { 𝑥 ∣ ∃ 𝑏𝑐𝑎 ( 𝑥 = ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∧ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) ) } ⊆ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) )
23 7 22 eqsstri { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) } ⊆ 𝑛 ∈ ℕ ( ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) × ( 𝔼 ‘ 𝑛 ) )
24 6 23 ssexi { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) } ∈ V
25 24 cnvex { ⟨ ⟨ 𝑏 , 𝑐 ⟩ , 𝑎 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑎 Btwn ⟨ 𝑏 , 𝑐 ⟩ ∨ 𝑏 Btwn ⟨ 𝑐 , 𝑎 ⟩ ∨ 𝑐 Btwn ⟨ 𝑎 , 𝑏 ⟩ ) ) } ∈ V
26 1 25 eqeltri Colinear ∈ V