| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-colinear | ⊢  Colinear   =  ◡ { 〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) } | 
						
							| 2 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 3 |  | fvex | ⊢ ( 𝔼 ‘ 𝑛 )  ∈  V | 
						
							| 4 | 3 3 | xpex | ⊢ ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ∈  V | 
						
							| 5 | 4 3 | xpex | ⊢ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) )  ∈  V | 
						
							| 6 | 2 5 | iunex | ⊢ ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) )  ∈  V | 
						
							| 7 |  | df-oprab | ⊢ { 〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) }  =  { 𝑥  ∣  ∃ 𝑏 ∃ 𝑐 ∃ 𝑎 ( 𝑥  =  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∧  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) ) } | 
						
							| 8 |  | opelxpi | ⊢ ( ( 𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  →  〈 𝑏 ,  𝑐 〉  ∈  ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  →  〈 𝑏 ,  𝑐 〉  ∈  ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 10 |  | simp1 | ⊢ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  →  𝑎  ∈  ( 𝔼 ‘ 𝑛 ) ) | 
						
							| 11 |  | opelxpi | ⊢ ( ( 〈 𝑏 ,  𝑐 〉  ∈  ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 ) )  →  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  →  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) )  →  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 14 | 13 | reximi | ⊢ ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) )  →  ∃ 𝑛  ∈  ℕ 〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 15 |  | eliun | ⊢ ( 〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕ 〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) )  →  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 17 |  | eleq1 | ⊢ ( 𝑥  =  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  →  ( 𝑥  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) )  ↔  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) ) | 
						
							| 18 | 17 | biimpar | ⊢ ( ( 𝑥  =  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∧  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) )  →  𝑥  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 19 | 16 18 | sylan2 | ⊢ ( ( 𝑥  =  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∧  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) )  →  𝑥  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑎 ( 𝑥  =  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∧  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) )  →  𝑥  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 21 | 20 | exlimivv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ∃ 𝑎 ( 𝑥  =  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∧  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) )  →  𝑥  ∈  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 22 | 21 | abssi | ⊢ { 𝑥  ∣  ∃ 𝑏 ∃ 𝑐 ∃ 𝑎 ( 𝑥  =  〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∧  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) ) }  ⊆  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) | 
						
							| 23 | 7 22 | eqsstri | ⊢ { 〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) }  ⊆  ∪  𝑛  ∈  ℕ ( ( ( 𝔼 ‘ 𝑛 )  ×  ( 𝔼 ‘ 𝑛 ) )  ×  ( 𝔼 ‘ 𝑛 ) ) | 
						
							| 24 | 6 23 | ssexi | ⊢ { 〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) }  ∈  V | 
						
							| 25 | 24 | cnvex | ⊢ ◡ { 〈 〈 𝑏 ,  𝑐 〉 ,  𝑎 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑎  Btwn  〈 𝑏 ,  𝑐 〉  ∨  𝑏  Btwn  〈 𝑐 ,  𝑎 〉  ∨  𝑐  Btwn  〈 𝑎 ,  𝑏 〉 ) ) }  ∈  V | 
						
							| 26 | 1 25 | eqeltri | ⊢  Colinear   ∈  V |