Metamath Proof Explorer


Theorem brcolinear

Description: The binary relation form of the colinearity predicate. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion brcolinear N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C A Btwn B C B Btwn C A C Btwn A B

Proof

Step Hyp Ref Expression
1 brcolinear2 B 𝔼 N C 𝔼 N A Colinear B C n A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B
2 1 3adant1 A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C n A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B
3 2 adantl N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C n A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B
4 simpr A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B A Btwn B C B Btwn C A C Btwn A B
5 4 rexlimivw n A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B A Btwn B C B Btwn C A C Btwn A B
6 fveq2 n = N 𝔼 n = 𝔼 N
7 6 eleq2d n = N A 𝔼 n A 𝔼 N
8 6 eleq2d n = N B 𝔼 n B 𝔼 N
9 6 eleq2d n = N C 𝔼 n C 𝔼 N
10 7 8 9 3anbi123d n = N A 𝔼 n B 𝔼 n C 𝔼 n A 𝔼 N B 𝔼 N C 𝔼 N
11 10 anbi1d n = N A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B Btwn C A C Btwn A B
12 11 rspcev N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B Btwn C A C Btwn A B n A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B
13 12 expr N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B Btwn C A C Btwn A B n A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B
14 5 13 impbid2 N A 𝔼 N B 𝔼 N C 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n A Btwn B C B Btwn C A C Btwn A B A Btwn B C B Btwn C A C Btwn A B
15 3 14 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C A Btwn B C B Btwn C A C Btwn A B