Metamath Proof Explorer


Theorem btwncolinear1

Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion btwncolinear1 NA𝔼NB𝔼NC𝔼NCBtwnABAColinearBC

Proof

Step Hyp Ref Expression
1 3mix3 CBtwnABABtwnBCBBtwnCACBtwnAB
2 brcolinear NA𝔼NB𝔼NC𝔼NAColinearBCABtwnBCBBtwnCACBtwnAB
3 1 2 imbitrrid NA𝔼NB𝔼NC𝔼NCBtwnABAColinearBC