Metamath Proof Explorer


Theorem camestros

Description: "Camestros", one of the syllogisms of Aristotelian logic. All ph is ps , no ch is ps , and ch exist, therefore some ch is not ph . In Aristotelian notation, AEO-2: PaM and SeM therefore SoP. For example, "All horses have hooves", "No humans have hooves", and humans exist, therefore "Some humans are not horses". (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses camestros.maj
|- A. x ( ph -> ps )
camestros.min
|- A. x ( ch -> -. ps )
camestros.e
|- E. x ch
Assertion camestros
|- E. x ( ch /\ -. ph )

Proof

Step Hyp Ref Expression
1 camestros.maj
 |-  A. x ( ph -> ps )
2 camestros.min
 |-  A. x ( ch -> -. ps )
3 camestros.e
 |-  E. x ch
4 1 2 camestres
 |-  A. x ( ch -> -. ph )
5 3 4 barbarilem
 |-  E. x ( ch /\ -. ph )