Metamath Proof Explorer


Theorem camestres

Description: "Camestres", one of the syllogisms of Aristotelian logic. All ph is ps , and no ch is ps , therefore no ch is ph . In Aristotelian notation, AEE-2: PaM and SeM therefore SeP. (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses camestres.maj
|- A. x ( ph -> ps )
camestres.min
|- A. x ( ch -> -. ps )
Assertion camestres
|- A. x ( ch -> -. ph )

Proof

Step Hyp Ref Expression
1 camestres.maj
 |-  A. x ( ph -> ps )
2 camestres.min
 |-  A. x ( ch -> -. ps )
3 con3
 |-  ( ( ph -> ps ) -> ( -. ps -> -. ph ) )
4 3 alimi
 |-  ( A. x ( ph -> ps ) -> A. x ( -. ps -> -. ph ) )
5 1 4 ax-mp
 |-  A. x ( -. ps -> -. ph )
6 5 2 celarent
 |-  A. x ( ch -> -. ph )