| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovd.1 |
|- ( ph -> A e. S ) |
| 2 |
|
caovd.2 |
|- ( ph -> B e. S ) |
| 3 |
|
caovd.3 |
|- ( ph -> C e. S ) |
| 4 |
|
caovd.com |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
| 5 |
|
caovd.ass |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
| 6 |
4 1 3
|
caovcomd |
|- ( ph -> ( A F C ) = ( C F A ) ) |
| 7 |
6
|
oveq1d |
|- ( ph -> ( ( A F C ) F B ) = ( ( C F A ) F B ) ) |
| 8 |
1 2 3 4 5
|
caov32d |
|- ( ph -> ( ( A F B ) F C ) = ( ( A F C ) F B ) ) |
| 9 |
3 2 1 4 5
|
caov32d |
|- ( ph -> ( ( C F B ) F A ) = ( ( C F A ) F B ) ) |
| 10 |
7 8 9
|
3eqtr4d |
|- ( ph -> ( ( A F B ) F C ) = ( ( C F B ) F A ) ) |