Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovd.1 | |- ( ph -> A e. S ) |
|
caovd.2 | |- ( ph -> B e. S ) |
||
caovd.3 | |- ( ph -> C e. S ) |
||
caovd.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
||
caovd.ass | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
||
Assertion | caov13d | |- ( ph -> ( A F ( B F C ) ) = ( C F ( B F A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.1 | |- ( ph -> A e. S ) |
|
2 | caovd.2 | |- ( ph -> B e. S ) |
|
3 | caovd.3 | |- ( ph -> C e. S ) |
|
4 | caovd.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
5 | caovd.ass | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
|
6 | 1 2 3 4 5 | caov31d | |- ( ph -> ( ( A F B ) F C ) = ( ( C F B ) F A ) ) |
7 | 5 1 2 3 | caovassd | |- ( ph -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |
8 | 5 3 2 1 | caovassd | |- ( ph -> ( ( C F B ) F A ) = ( C F ( B F A ) ) ) |
9 | 6 7 8 | 3eqtr3d | |- ( ph -> ( A F ( B F C ) ) = ( C F ( B F A ) ) ) |