| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovd.1 |
|- ( ph -> A e. S ) |
| 2 |
|
caovd.2 |
|- ( ph -> B e. S ) |
| 3 |
|
caovd.3 |
|- ( ph -> C e. S ) |
| 4 |
|
caovd.com |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
| 5 |
|
caovd.ass |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
| 6 |
|
caovd.4 |
|- ( ph -> D e. S ) |
| 7 |
|
caovd.cl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) e. S ) |
| 8 |
2 3 6 4 5
|
caov12d |
|- ( ph -> ( B F ( C F D ) ) = ( C F ( B F D ) ) ) |
| 9 |
8
|
oveq2d |
|- ( ph -> ( A F ( B F ( C F D ) ) ) = ( A F ( C F ( B F D ) ) ) ) |
| 10 |
7 3 6
|
caovcld |
|- ( ph -> ( C F D ) e. S ) |
| 11 |
5 1 2 10
|
caovassd |
|- ( ph -> ( ( A F B ) F ( C F D ) ) = ( A F ( B F ( C F D ) ) ) ) |
| 12 |
7 2 6
|
caovcld |
|- ( ph -> ( B F D ) e. S ) |
| 13 |
5 1 3 12
|
caovassd |
|- ( ph -> ( ( A F C ) F ( B F D ) ) = ( A F ( C F ( B F D ) ) ) ) |
| 14 |
9 11 13
|
3eqtr4d |
|- ( ph -> ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( B F D ) ) ) |