Metamath Proof Explorer


Theorem caov4d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φAS
caovd.2 φBS
caovd.3 φCS
caovd.com φxSySxFy=yFx
caovd.ass φxSySzSxFyFz=xFyFz
caovd.4 φDS
caovd.cl φxSySxFyS
Assertion caov4d φAFBFCFD=AFCFBFD

Proof

Step Hyp Ref Expression
1 caovd.1 φAS
2 caovd.2 φBS
3 caovd.3 φCS
4 caovd.com φxSySxFy=yFx
5 caovd.ass φxSySzSxFyFz=xFyFz
6 caovd.4 φDS
7 caovd.cl φxSySxFyS
8 2 3 6 4 5 caov12d φBFCFD=CFBFD
9 8 oveq2d φAFBFCFD=AFCFBFD
10 7 3 6 caovcld φCFDS
11 5 1 2 10 caovassd φAFBFCFD=AFBFCFD
12 7 2 6 caovcld φBFDS
13 5 1 3 12 caovassd φAFCFBFD=AFCFBFD
14 9 11 13 3eqtr4d φAFBFCFD=AFCFBFD