Metamath Proof Explorer


Theorem caov411d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φAS
caovd.2 φBS
caovd.3 φCS
caovd.com φxSySxFy=yFx
caovd.ass φxSySzSxFyFz=xFyFz
caovd.4 φDS
caovd.cl φxSySxFyS
Assertion caov411d φAFBFCFD=CFBFAFD

Proof

Step Hyp Ref Expression
1 caovd.1 φAS
2 caovd.2 φBS
3 caovd.3 φCS
4 caovd.com φxSySxFy=yFx
5 caovd.ass φxSySzSxFyFz=xFyFz
6 caovd.4 φDS
7 caovd.cl φxSySxFyS
8 2 1 3 4 5 6 7 caov4d φBFAFCFD=BFCFAFD
9 4 2 1 caovcomd φBFA=AFB
10 9 oveq1d φBFAFCFD=AFBFCFD
11 4 2 3 caovcomd φBFC=CFB
12 11 oveq1d φBFCFAFD=CFBFAFD
13 8 10 12 3eqtr3d φAFBFCFD=CFBFAFD