Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovordg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| caovordd.2 | |- ( ph -> A e. S ) |
||
| caovordd.3 | |- ( ph -> B e. S ) |
||
| caovordd.4 | |- ( ph -> C e. S ) |
||
| Assertion | caovordd | |- ( ph -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovordg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| 2 | caovordd.2 | |- ( ph -> A e. S ) |
|
| 3 | caovordd.3 | |- ( ph -> B e. S ) |
|
| 4 | caovordd.4 | |- ( ph -> C e. S ) |
|
| 5 | id | |- ( ph -> ph ) |
|
| 6 | 1 | caovordg | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
| 7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |