| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovordg.1 |  |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) | 
						
							| 2 |  | caovordd.2 |  |-  ( ph -> A e. S ) | 
						
							| 3 |  | caovordd.3 |  |-  ( ph -> B e. S ) | 
						
							| 4 |  | caovordd.4 |  |-  ( ph -> C e. S ) | 
						
							| 5 |  | caovord2d.com |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) | 
						
							| 6 | 1 2 3 4 | caovordd |  |-  ( ph -> ( A R B <-> ( C F A ) R ( C F B ) ) ) | 
						
							| 7 | 5 4 2 | caovcomd |  |-  ( ph -> ( C F A ) = ( A F C ) ) | 
						
							| 8 | 5 4 3 | caovcomd |  |-  ( ph -> ( C F B ) = ( B F C ) ) | 
						
							| 9 | 7 8 | breq12d |  |-  ( ph -> ( ( C F A ) R ( C F B ) <-> ( A F C ) R ( B F C ) ) ) | 
						
							| 10 | 6 9 | bitrd |  |-  ( ph -> ( A R B <-> ( A F C ) R ( B F C ) ) ) |