| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovordg.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑥 𝑅 𝑦  ↔  ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | 
						
							| 2 |  | caovordd.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 3 |  | caovordd.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝑆 ) | 
						
							| 4 |  | caovordd.4 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 5 |  | caovord2d.com | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑦 𝐹 𝑥 ) ) | 
						
							| 6 | 1 2 3 4 | caovordd | ⊢ ( 𝜑  →  ( 𝐴 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | 
						
							| 7 | 5 4 2 | caovcomd | ⊢ ( 𝜑  →  ( 𝐶 𝐹 𝐴 )  =  ( 𝐴 𝐹 𝐶 ) ) | 
						
							| 8 | 5 4 3 | caovcomd | ⊢ ( 𝜑  →  ( 𝐶 𝐹 𝐵 )  =  ( 𝐵 𝐹 𝐶 ) ) | 
						
							| 9 | 7 8 | breq12d | ⊢ ( 𝜑  →  ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 )  ↔  ( 𝐴 𝐹 𝐶 ) 𝑅 ( 𝐵 𝐹 𝐶 ) ) ) | 
						
							| 10 | 6 9 | bitrd | ⊢ ( 𝜑  →  ( 𝐴 𝑅 𝐵  ↔  ( 𝐴 𝐹 𝐶 ) 𝑅 ( 𝐵 𝐹 𝐶 ) ) ) |