| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovordg.1 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
| 2 |
|
caovordd.2 |
|- ( ph -> A e. S ) |
| 3 |
|
caovordd.3 |
|- ( ph -> B e. S ) |
| 4 |
|
caovordd.4 |
|- ( ph -> C e. S ) |
| 5 |
|
caovord2d.com |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
| 6 |
|
caovord3d.5 |
|- ( ph -> D e. S ) |
| 7 |
|
breq1 |
|- ( ( A F B ) = ( C F D ) -> ( ( A F B ) R ( C F B ) <-> ( C F D ) R ( C F B ) ) ) |
| 8 |
1 2 4 3 5
|
caovord2d |
|- ( ph -> ( A R C <-> ( A F B ) R ( C F B ) ) ) |
| 9 |
1 6 3 4
|
caovordd |
|- ( ph -> ( D R B <-> ( C F D ) R ( C F B ) ) ) |
| 10 |
8 9
|
bibi12d |
|- ( ph -> ( ( A R C <-> D R B ) <-> ( ( A F B ) R ( C F B ) <-> ( C F D ) R ( C F B ) ) ) ) |
| 11 |
7 10
|
imbitrrid |
|- ( ph -> ( ( A F B ) = ( C F D ) -> ( A R C <-> D R B ) ) ) |