| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovord.1 |
|- A e. _V |
| 2 |
|
caovord.2 |
|- B e. _V |
| 3 |
|
caovord.3 |
|- ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
| 4 |
|
oveq1 |
|- ( z = C -> ( z F A ) = ( C F A ) ) |
| 5 |
|
oveq1 |
|- ( z = C -> ( z F B ) = ( C F B ) ) |
| 6 |
4 5
|
breq12d |
|- ( z = C -> ( ( z F A ) R ( z F B ) <-> ( C F A ) R ( C F B ) ) ) |
| 7 |
6
|
bibi2d |
|- ( z = C -> ( ( A R B <-> ( z F A ) R ( z F B ) ) <-> ( A R B <-> ( C F A ) R ( C F B ) ) ) ) |
| 8 |
|
breq1 |
|- ( x = A -> ( x R y <-> A R y ) ) |
| 9 |
|
oveq2 |
|- ( x = A -> ( z F x ) = ( z F A ) ) |
| 10 |
9
|
breq1d |
|- ( x = A -> ( ( z F x ) R ( z F y ) <-> ( z F A ) R ( z F y ) ) ) |
| 11 |
8 10
|
bibi12d |
|- ( x = A -> ( ( x R y <-> ( z F x ) R ( z F y ) ) <-> ( A R y <-> ( z F A ) R ( z F y ) ) ) ) |
| 12 |
|
breq2 |
|- ( y = B -> ( A R y <-> A R B ) ) |
| 13 |
|
oveq2 |
|- ( y = B -> ( z F y ) = ( z F B ) ) |
| 14 |
13
|
breq2d |
|- ( y = B -> ( ( z F A ) R ( z F y ) <-> ( z F A ) R ( z F B ) ) ) |
| 15 |
12 14
|
bibi12d |
|- ( y = B -> ( ( A R y <-> ( z F A ) R ( z F y ) ) <-> ( A R B <-> ( z F A ) R ( z F B ) ) ) ) |
| 16 |
11 15
|
sylan9bb |
|- ( ( x = A /\ y = B ) -> ( ( x R y <-> ( z F x ) R ( z F y ) ) <-> ( A R B <-> ( z F A ) R ( z F B ) ) ) ) |
| 17 |
16
|
imbi2d |
|- ( ( x = A /\ y = B ) -> ( ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) ) <-> ( z e. S -> ( A R B <-> ( z F A ) R ( z F B ) ) ) ) ) |
| 18 |
1 2 17 3
|
vtocl2 |
|- ( z e. S -> ( A R B <-> ( z F A ) R ( z F B ) ) ) |
| 19 |
7 18
|
vtoclga |
|- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |