| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catccatid.c |
|- C = ( CatCat ` U ) |
| 2 |
|
catccatid.b |
|- B = ( Base ` C ) |
| 3 |
|
catcid.o |
|- .1. = ( Id ` C ) |
| 4 |
|
catcid.i |
|- I = ( idFunc ` X ) |
| 5 |
|
catcid.u |
|- ( ph -> U e. V ) |
| 6 |
|
catcid.x |
|- ( ph -> X e. B ) |
| 7 |
1 2
|
catccatid |
|- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( idFunc ` x ) ) ) ) |
| 8 |
5 7
|
syl |
|- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( idFunc ` x ) ) ) ) |
| 9 |
8
|
simprd |
|- ( ph -> ( Id ` C ) = ( x e. B |-> ( idFunc ` x ) ) ) |
| 10 |
3 9
|
eqtrid |
|- ( ph -> .1. = ( x e. B |-> ( idFunc ` x ) ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( idFunc ` x ) = ( idFunc ` X ) ) |
| 13 |
|
fvexd |
|- ( ph -> ( idFunc ` X ) e. _V ) |
| 14 |
10 12 6 13
|
fvmptd |
|- ( ph -> ( .1. ` X ) = ( idFunc ` X ) ) |
| 15 |
14 4
|
eqtr4di |
|- ( ph -> ( .1. ` X ) = I ) |