Metamath Proof Explorer


Theorem catprs2

Description: A category equipped with the induced preorder, where an object x is defined to be "less than or equal to" y iff there is a morphism from x to y , is a preordered set, or a proset. The category might not be thin. See catprsc and catprsc2 for constructions satisfying the hypothesis "catprs.1". See catprs for a more primitive version. See prsthinc for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses catprs.1
|- ( ph -> A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) )
catprs.b
|- ( ph -> B = ( Base ` C ) )
catprs.h
|- ( ph -> H = ( Hom ` C ) )
catprs.c
|- ( ph -> C e. Cat )
catprs2.l
|- ( ph -> .<_ = ( le ` C ) )
Assertion catprs2
|- ( ph -> C e. Proset )

Proof

Step Hyp Ref Expression
1 catprs.1
 |-  ( ph -> A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) )
2 catprs.b
 |-  ( ph -> B = ( Base ` C ) )
3 catprs.h
 |-  ( ph -> H = ( Hom ` C ) )
4 catprs.c
 |-  ( ph -> C e. Cat )
5 catprs2.l
 |-  ( ph -> .<_ = ( le ` C ) )
6 1 2 3 4 catprs
 |-  ( ( ph /\ ( w e. B /\ v e. B /\ u e. B ) ) -> ( w .<_ w /\ ( ( w .<_ v /\ v .<_ u ) -> w .<_ u ) ) )
7 6 ralrimivvva
 |-  ( ph -> A. w e. B A. v e. B A. u e. B ( w .<_ w /\ ( ( w .<_ v /\ v .<_ u ) -> w .<_ u ) ) )
8 2 5 4 isprsd
 |-  ( ph -> ( C e. Proset <-> A. w e. B A. v e. B A. u e. B ( w .<_ w /\ ( ( w .<_ v /\ v .<_ u ) -> w .<_ u ) ) ) )
9 7 8 mpbird
 |-  ( ph -> C e. Proset )