Description: A category equipped with the induced preorder, where an object x is defined to be "less than or equal to" y iff there is a morphism from x to y , is a preordered set, or a proset. The category might not be thin. See catprsc and catprsc2 for constructions satisfying the hypothesis "catprs.1". See catprs for a more primitive version. See prsthinc for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catprs.1 | |- ( ph -> A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) ) |
|
| catprs.b | |- ( ph -> B = ( Base ` C ) ) |
||
| catprs.h | |- ( ph -> H = ( Hom ` C ) ) |
||
| catprs.c | |- ( ph -> C e. Cat ) |
||
| catprs2.l | |- ( ph -> .<_ = ( le ` C ) ) |
||
| Assertion | catprs2 | |- ( ph -> C e. Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprs.1 | |- ( ph -> A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) ) |
|
| 2 | catprs.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 3 | catprs.h | |- ( ph -> H = ( Hom ` C ) ) |
|
| 4 | catprs.c | |- ( ph -> C e. Cat ) |
|
| 5 | catprs2.l | |- ( ph -> .<_ = ( le ` C ) ) |
|
| 6 | 1 2 3 4 | catprs | |- ( ( ph /\ ( w e. B /\ v e. B /\ u e. B ) ) -> ( w .<_ w /\ ( ( w .<_ v /\ v .<_ u ) -> w .<_ u ) ) ) |
| 7 | 6 | ralrimivvva | |- ( ph -> A. w e. B A. v e. B A. u e. B ( w .<_ w /\ ( ( w .<_ v /\ v .<_ u ) -> w .<_ u ) ) ) |
| 8 | 2 5 4 | isprsd | |- ( ph -> ( C e. Proset <-> A. w e. B A. v e. B A. u e. B ( w .<_ w /\ ( ( w .<_ v /\ v .<_ u ) -> w .<_ u ) ) ) ) |
| 9 | 7 8 | mpbird | |- ( ph -> C e. Proset ) |