| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catprsc2.1 |
|- ( ph -> .<_ = { <. x , y >. | ( x H y ) =/= (/) } ) |
| 2 |
1
|
breqd |
|- ( ph -> ( z .<_ w <-> z { <. x , y >. | ( x H y ) =/= (/) } w ) ) |
| 3 |
|
vex |
|- z e. _V |
| 4 |
|
vex |
|- w e. _V |
| 5 |
|
oveq12 |
|- ( ( x = z /\ y = w ) -> ( x H y ) = ( z H w ) ) |
| 6 |
5
|
neeq1d |
|- ( ( x = z /\ y = w ) -> ( ( x H y ) =/= (/) <-> ( z H w ) =/= (/) ) ) |
| 7 |
|
eqid |
|- { <. x , y >. | ( x H y ) =/= (/) } = { <. x , y >. | ( x H y ) =/= (/) } |
| 8 |
3 4 6 7
|
braba |
|- ( z { <. x , y >. | ( x H y ) =/= (/) } w <-> ( z H w ) =/= (/) ) |
| 9 |
2 8
|
bitrdi |
|- ( ph -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| 11 |
10
|
ralrimivva |
|- ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |