| Step |
Hyp |
Ref |
Expression |
| 1 |
|
endmndlem.b |
|- B = ( Base ` C ) |
| 2 |
|
endmndlem.h |
|- H = ( Hom ` C ) |
| 3 |
|
endmndlem.o |
|- .x. = ( comp ` C ) |
| 4 |
|
endmndlem.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
endmndlem.x |
|- ( ph -> X e. B ) |
| 6 |
|
endmndlem.m |
|- ( ph -> ( X H X ) = ( Base ` M ) ) |
| 7 |
|
endmndlem.p |
|- ( ph -> ( <. X , X >. .x. X ) = ( +g ` M ) ) |
| 8 |
4
|
3ad2ant1 |
|- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> C e. Cat ) |
| 9 |
5
|
3ad2ant1 |
|- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> X e. B ) |
| 10 |
|
simp3 |
|- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> g e. ( X H X ) ) |
| 11 |
|
simp2 |
|- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> f e. ( X H X ) ) |
| 12 |
1 2 3 8 9 9 9 10 11
|
catcocl |
|- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> ( f ( <. X , X >. .x. X ) g ) e. ( X H X ) ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> C e. Cat ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> X e. B ) |
| 15 |
|
simpr3 |
|- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> k e. ( X H X ) ) |
| 16 |
|
simpr2 |
|- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> g e. ( X H X ) ) |
| 17 |
|
simpr1 |
|- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> f e. ( X H X ) ) |
| 18 |
1 2 3 13 14 14 14 15 16 14 17
|
catass |
|- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> ( ( f ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) k ) = ( f ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) k ) ) ) |
| 19 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 20 |
1 2 19 4 5
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
| 21 |
4
|
adantr |
|- ( ( ph /\ f e. ( X H X ) ) -> C e. Cat ) |
| 22 |
5
|
adantr |
|- ( ( ph /\ f e. ( X H X ) ) -> X e. B ) |
| 23 |
|
simpr |
|- ( ( ph /\ f e. ( X H X ) ) -> f e. ( X H X ) ) |
| 24 |
1 2 19 21 22 3 22 23
|
catlid |
|- ( ( ph /\ f e. ( X H X ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. .x. X ) f ) = f ) |
| 25 |
1 2 19 21 22 3 22 23
|
catrid |
|- ( ( ph /\ f e. ( X H X ) ) -> ( f ( <. X , X >. .x. X ) ( ( Id ` C ) ` X ) ) = f ) |
| 26 |
6 7 12 18 20 24 25
|
ismndd |
|- ( ph -> M e. Mnd ) |