Metamath Proof Explorer


Theorem cbv1h

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 11-May-1993) (Proof shortened by Wolf Lammen, 13-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses cbv1h.1
|- ( ph -> ( ps -> A. y ps ) )
cbv1h.2
|- ( ph -> ( ch -> A. x ch ) )
cbv1h.3
|- ( ph -> ( x = y -> ( ps -> ch ) ) )
Assertion cbv1h
|- ( A. x A. y ph -> ( A. x ps -> A. y ch ) )

Proof

Step Hyp Ref Expression
1 cbv1h.1
 |-  ( ph -> ( ps -> A. y ps ) )
2 cbv1h.2
 |-  ( ph -> ( ch -> A. x ch ) )
3 cbv1h.3
 |-  ( ph -> ( x = y -> ( ps -> ch ) ) )
4 nfa1
 |-  F/ x A. x A. y ph
5 nfa2
 |-  F/ y A. x A. y ph
6 2sp
 |-  ( A. x A. y ph -> ph )
7 6 1 syl
 |-  ( A. x A. y ph -> ( ps -> A. y ps ) )
8 5 7 nf5d
 |-  ( A. x A. y ph -> F/ y ps )
9 6 2 syl
 |-  ( A. x A. y ph -> ( ch -> A. x ch ) )
10 4 9 nf5d
 |-  ( A. x A. y ph -> F/ x ch )
11 6 3 syl
 |-  ( A. x A. y ph -> ( x = y -> ( ps -> ch ) ) )
12 4 5 8 10 11 cbv1
 |-  ( A. x A. y ph -> ( A. x ps -> A. y ch ) )