Metamath Proof Explorer


Theorem cbv3

Description: Rule used to change bound variables, using implicit substitution, that does not use ax-c9 . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbv3v if possible. (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 12-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses cbv3.1
|- F/ y ph
cbv3.2
|- F/ x ps
cbv3.3
|- ( x = y -> ( ph -> ps ) )
Assertion cbv3
|- ( A. x ph -> A. y ps )

Proof

Step Hyp Ref Expression
1 cbv3.1
 |-  F/ y ph
2 cbv3.2
 |-  F/ x ps
3 cbv3.3
 |-  ( x = y -> ( ph -> ps ) )
4 1 nf5ri
 |-  ( ph -> A. y ph )
5 4 hbal
 |-  ( A. x ph -> A. y A. x ph )
6 2 3 spim
 |-  ( A. x ph -> ps )
7 5 6 alrimih
 |-  ( A. x ph -> A. y ps )