Metamath Proof Explorer


Theorem cbvaldvaw

Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Version of cbvaldva with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017) (Revised by Gino Giotto, 10-Jan-2024) Reduce axiom usage, along an idea of Gino Giotto. (Revised by Wolf Lammen, 10-Feb-2024)

Ref Expression
Hypothesis cbvaldvaw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvaldvaw
|- ( ph -> ( A. x ps <-> A. y ch ) )

Proof

Step Hyp Ref Expression
1 cbvaldvaw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 1 ancoms
 |-  ( ( x = y /\ ph ) -> ( ps <-> ch ) )
3 2 pm5.74da
 |-  ( x = y -> ( ( ph -> ps ) <-> ( ph -> ch ) ) )
4 3 cbvalvw
 |-  ( A. x ( ph -> ps ) <-> A. y ( ph -> ch ) )
5 19.21v
 |-  ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) )
6 19.21v
 |-  ( A. y ( ph -> ch ) <-> ( ph -> A. y ch ) )
7 4 5 6 3bitr3i
 |-  ( ( ph -> A. x ps ) <-> ( ph -> A. y ch ) )
8 7 pm5.74ri
 |-  ( ph -> ( A. x ps <-> A. y ch ) )