Metamath Proof Explorer


Theorem cbvcsbvw2

Description: Change bound variable of a proper substitution into a class using implicit substitution. General version of cbvcsbv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvcsbvw2.1
|- A = B
cbvcsbvw2.2
|- ( x = y -> C = D )
Assertion cbvcsbvw2
|- [_ A / x ]_ C = [_ B / y ]_ D

Proof

Step Hyp Ref Expression
1 cbvcsbvw2.1
 |-  A = B
2 cbvcsbvw2.2
 |-  ( x = y -> C = D )
3 2 eleq2d
 |-  ( x = y -> ( t e. C <-> t e. D ) )
4 1 3 cbvsbcvw2
 |-  ( [. A / x ]. t e. C <-> [. B / y ]. t e. D )
5 4 abbii
 |-  { t | [. A / x ]. t e. C } = { t | [. B / y ]. t e. D }
6 df-csb
 |-  [_ A / x ]_ C = { t | [. A / x ]. t e. C }
7 df-csb
 |-  [_ B / y ]_ D = { t | [. B / y ]. t e. D }
8 5 6 7 3eqtr4i
 |-  [_ A / x ]_ C = [_ B / y ]_ D