Metamath Proof Explorer


Theorem cbvsbcvw2

Description: Change bound variable of a class substitution using implicit substitution. General version of cbvsbcvw . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvsbcvw2.1
|- A = B
cbvsbcvw2.2
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvsbcvw2
|- ( [. A / x ]. ph <-> [. B / y ]. ps )

Proof

Step Hyp Ref Expression
1 cbvsbcvw2.1
 |-  A = B
2 cbvsbcvw2.2
 |-  ( x = y -> ( ph <-> ps ) )
3 2 cbvabv
 |-  { x | ph } = { y | ps }
4 1 3 eleq12i
 |-  ( A e. { x | ph } <-> B e. { y | ps } )
5 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
6 df-sbc
 |-  ( [. B / y ]. ps <-> B e. { y | ps } )
7 4 5 6 3bitr4i
 |-  ( [. A / x ]. ph <-> [. B / y ]. ps )