Metamath Proof Explorer


Theorem cbvsbcvw2

Description: Change bound variable of a class substitution using implicit substitution. General version of cbvsbcvw . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvsbcvw2.1 𝐴 = 𝐵
cbvsbcvw2.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvsbcvw2 ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐵 / 𝑦 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvsbcvw2.1 𝐴 = 𝐵
2 cbvsbcvw2.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 2 cbvabv { 𝑥𝜑 } = { 𝑦𝜓 }
4 1 3 eleq12i ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝐵 ∈ { 𝑦𝜓 } )
5 df-sbc ( [ 𝐴 / 𝑥 ] 𝜑𝐴 ∈ { 𝑥𝜑 } )
6 df-sbc ( [ 𝐵 / 𝑦 ] 𝜓𝐵 ∈ { 𝑦𝜓 } )
7 4 5 6 3bitr4i ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐵 / 𝑦 ] 𝜓 )