Metamath Proof Explorer


Theorem cbvcsbvw2

Description: Change bound variable of a proper substitution into a class using implicit substitution. General version of cbvcsbv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvcsbvw2.1 𝐴 = 𝐵
cbvcsbvw2.2 ( 𝑥 = 𝑦𝐶 = 𝐷 )
Assertion cbvcsbvw2 𝐴 / 𝑥 𝐶 = 𝐵 / 𝑦 𝐷

Proof

Step Hyp Ref Expression
1 cbvcsbvw2.1 𝐴 = 𝐵
2 cbvcsbvw2.2 ( 𝑥 = 𝑦𝐶 = 𝐷 )
3 2 eleq2d ( 𝑥 = 𝑦 → ( 𝑡𝐶𝑡𝐷 ) )
4 1 3 cbvsbcvw2 ( [ 𝐴 / 𝑥 ] 𝑡𝐶[ 𝐵 / 𝑦 ] 𝑡𝐷 )
5 4 abbii { 𝑡[ 𝐴 / 𝑥 ] 𝑡𝐶 } = { 𝑡[ 𝐵 / 𝑦 ] 𝑡𝐷 }
6 df-csb 𝐴 / 𝑥 𝐶 = { 𝑡[ 𝐴 / 𝑥 ] 𝑡𝐶 }
7 df-csb 𝐵 / 𝑦 𝐷 = { 𝑡[ 𝐵 / 𝑦 ] 𝑡𝐷 }
8 5 6 7 3eqtr4i 𝐴 / 𝑥 𝐶 = 𝐵 / 𝑦 𝐷