Metamath Proof Explorer


Theorem cbvsbcvw2

Description: Change bound variable of a class substitution using implicit substitution. General version of cbvsbcvw . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvsbcvw2.1 A = B
cbvsbcvw2.2 x = y φ ψ
Assertion cbvsbcvw2 [˙A / x]˙ φ [˙B / y]˙ ψ

Proof

Step Hyp Ref Expression
1 cbvsbcvw2.1 A = B
2 cbvsbcvw2.2 x = y φ ψ
3 2 cbvabv x | φ = y | ψ
4 1 3 eleq12i A x | φ B y | ψ
5 df-sbc [˙A / x]˙ φ A x | φ
6 df-sbc [˙B / y]˙ ψ B y | ψ
7 4 5 6 3bitr4i [˙A / x]˙ φ [˙B / y]˙ ψ