Metamath Proof Explorer


Theorem cbvmpo1vw2

Description: Change domains and the first bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmpo1vw2.1
|- ( x = z -> E = F )
cbvmpo1vw2.2
|- ( x = z -> C = D )
cbvmpo1vw2.3
|- ( x = z -> A = B )
Assertion cbvmpo1vw2
|- ( x e. A , y e. C |-> E ) = ( z e. B , y e. D |-> F )

Proof

Step Hyp Ref Expression
1 cbvmpo1vw2.1
 |-  ( x = z -> E = F )
2 cbvmpo1vw2.2
 |-  ( x = z -> C = D )
3 cbvmpo1vw2.3
 |-  ( x = z -> A = B )
4 id
 |-  ( x = z -> x = z )
5 4 3 eleq12d
 |-  ( x = z -> ( x e. A <-> z e. B ) )
6 2 eleq2d
 |-  ( x = z -> ( y e. C <-> y e. D ) )
7 5 6 anbi12d
 |-  ( x = z -> ( ( x e. A /\ y e. C ) <-> ( z e. B /\ y e. D ) ) )
8 1 eqeq2d
 |-  ( x = z -> ( t = E <-> t = F ) )
9 7 8 anbi12d
 |-  ( x = z -> ( ( ( x e. A /\ y e. C ) /\ t = E ) <-> ( ( z e. B /\ y e. D ) /\ t = F ) ) )
10 9 cbvoprab1vw
 |-  { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) } = { <. <. z , y >. , t >. | ( ( z e. B /\ y e. D ) /\ t = F ) }
11 df-mpo
 |-  ( x e. A , y e. C |-> E ) = { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) }
12 df-mpo
 |-  ( z e. B , y e. D |-> F ) = { <. <. z , y >. , t >. | ( ( z e. B /\ y e. D ) /\ t = F ) }
13 10 11 12 3eqtr4i
 |-  ( x e. A , y e. C |-> E ) = ( z e. B , y e. D |-> F )