| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvmpo1vw2.1 |
|- ( x = z -> E = F ) |
| 2 |
|
cbvmpo1vw2.2 |
|- ( x = z -> C = D ) |
| 3 |
|
cbvmpo1vw2.3 |
|- ( x = z -> A = B ) |
| 4 |
|
id |
|- ( x = z -> x = z ) |
| 5 |
4 3
|
eleq12d |
|- ( x = z -> ( x e. A <-> z e. B ) ) |
| 6 |
2
|
eleq2d |
|- ( x = z -> ( y e. C <-> y e. D ) ) |
| 7 |
5 6
|
anbi12d |
|- ( x = z -> ( ( x e. A /\ y e. C ) <-> ( z e. B /\ y e. D ) ) ) |
| 8 |
1
|
eqeq2d |
|- ( x = z -> ( t = E <-> t = F ) ) |
| 9 |
7 8
|
anbi12d |
|- ( x = z -> ( ( ( x e. A /\ y e. C ) /\ t = E ) <-> ( ( z e. B /\ y e. D ) /\ t = F ) ) ) |
| 10 |
9
|
cbvoprab1vw |
|- { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) } = { <. <. z , y >. , t >. | ( ( z e. B /\ y e. D ) /\ t = F ) } |
| 11 |
|
df-mpo |
|- ( x e. A , y e. C |-> E ) = { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) } |
| 12 |
|
df-mpo |
|- ( z e. B , y e. D |-> F ) = { <. <. z , y >. , t >. | ( ( z e. B /\ y e. D ) /\ t = F ) } |
| 13 |
10 11 12
|
3eqtr4i |
|- ( x e. A , y e. C |-> E ) = ( z e. B , y e. D |-> F ) |