Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpo2vw2.1 |
|- ( y = z -> E = F ) |
2 |
|
cbvmpo2vw2.2 |
|- ( y = z -> C = D ) |
3 |
|
cbvmpo2vw2.3 |
|- ( y = z -> A = B ) |
4 |
3
|
eleq2d |
|- ( y = z -> ( x e. A <-> x e. B ) ) |
5 |
|
id |
|- ( y = z -> y = z ) |
6 |
5 2
|
eleq12d |
|- ( y = z -> ( y e. C <-> z e. D ) ) |
7 |
4 6
|
anbi12d |
|- ( y = z -> ( ( x e. A /\ y e. C ) <-> ( x e. B /\ z e. D ) ) ) |
8 |
1
|
eqeq2d |
|- ( y = z -> ( t = E <-> t = F ) ) |
9 |
7 8
|
anbi12d |
|- ( y = z -> ( ( ( x e. A /\ y e. C ) /\ t = E ) <-> ( ( x e. B /\ z e. D ) /\ t = F ) ) ) |
10 |
9
|
cbvoprab2vw |
|- { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) } = { <. <. x , z >. , t >. | ( ( x e. B /\ z e. D ) /\ t = F ) } |
11 |
|
df-mpo |
|- ( x e. A , y e. C |-> E ) = { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) } |
12 |
|
df-mpo |
|- ( x e. B , z e. D |-> F ) = { <. <. x , z >. , t >. | ( ( x e. B /\ z e. D ) /\ t = F ) } |
13 |
10 11 12
|
3eqtr4i |
|- ( x e. A , y e. C |-> E ) = ( x e. B , z e. D |-> F ) |