Metamath Proof Explorer


Theorem cbvmpo2vw2

Description: Change domains and the second bound variable in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmpo2vw2.1
|- ( y = z -> E = F )
cbvmpo2vw2.2
|- ( y = z -> C = D )
cbvmpo2vw2.3
|- ( y = z -> A = B )
Assertion cbvmpo2vw2
|- ( x e. A , y e. C |-> E ) = ( x e. B , z e. D |-> F )

Proof

Step Hyp Ref Expression
1 cbvmpo2vw2.1
 |-  ( y = z -> E = F )
2 cbvmpo2vw2.2
 |-  ( y = z -> C = D )
3 cbvmpo2vw2.3
 |-  ( y = z -> A = B )
4 3 eleq2d
 |-  ( y = z -> ( x e. A <-> x e. B ) )
5 id
 |-  ( y = z -> y = z )
6 5 2 eleq12d
 |-  ( y = z -> ( y e. C <-> z e. D ) )
7 4 6 anbi12d
 |-  ( y = z -> ( ( x e. A /\ y e. C ) <-> ( x e. B /\ z e. D ) ) )
8 1 eqeq2d
 |-  ( y = z -> ( t = E <-> t = F ) )
9 7 8 anbi12d
 |-  ( y = z -> ( ( ( x e. A /\ y e. C ) /\ t = E ) <-> ( ( x e. B /\ z e. D ) /\ t = F ) ) )
10 9 cbvoprab2vw
 |-  { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) } = { <. <. x , z >. , t >. | ( ( x e. B /\ z e. D ) /\ t = F ) }
11 df-mpo
 |-  ( x e. A , y e. C |-> E ) = { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) }
12 df-mpo
 |-  ( x e. B , z e. D |-> F ) = { <. <. x , z >. , t >. | ( ( x e. B /\ z e. D ) /\ t = F ) }
13 10 11 12 3eqtr4i
 |-  ( x e. A , y e. C |-> E ) = ( x e. B , z e. D |-> F )