Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpo2vw2.1 |
⊢ ( 𝑦 = 𝑧 → 𝐸 = 𝐹 ) |
2 |
|
cbvmpo2vw2.2 |
⊢ ( 𝑦 = 𝑧 → 𝐶 = 𝐷 ) |
3 |
|
cbvmpo2vw2.3 |
⊢ ( 𝑦 = 𝑧 → 𝐴 = 𝐵 ) |
4 |
3
|
eleq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
5 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
6 |
5 2
|
eleq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷 ) ) |
7 |
4 6
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷 ) ) ) |
8 |
1
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑡 = 𝐸 ↔ 𝑡 = 𝐹 ) ) |
9 |
7 8
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) ) ) |
10 |
9
|
cbvoprab2vw |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑡 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) } = { 〈 〈 𝑥 , 𝑧 〉 , 𝑡 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) } |
11 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑡 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) } |
12 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐵 , 𝑧 ∈ 𝐷 ↦ 𝐹 ) = { 〈 〈 𝑥 , 𝑧 〉 , 𝑡 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) } |
13 |
10 11 12
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = ( 𝑥 ∈ 𝐵 , 𝑧 ∈ 𝐷 ↦ 𝐹 ) |