Metamath Proof Explorer


Theorem cbvoprab2vw

Description: Change the second bound variable in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab2vw.1 ( 𝑦 = 𝑤 → ( 𝜓𝜒 ) )
Assertion cbvoprab2vw { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∣ 𝜒 }

Proof

Step Hyp Ref Expression
1 cbvoprab2vw.1 ( 𝑦 = 𝑤 → ( 𝜓𝜒 ) )
2 opeq2 ( 𝑦 = 𝑤 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑤 ⟩ )
3 2 opeq1d ( 𝑦 = 𝑤 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ )
4 3 eqeq2d ( 𝑦 = 𝑤 → ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ↔ 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ) )
5 4 1 anbi12d ( 𝑦 = 𝑤 → ( ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) ) )
6 5 exbidv ( 𝑦 = 𝑤 → ( ∃ 𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) ) )
7 6 cbvexvw ( ∃ 𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑤𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) )
8 7 exbii ( ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑥𝑤𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) )
9 8 abbii { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑥𝑤𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) }
10 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) }
11 df-oprab { ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑥𝑤𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) }
12 9 10 11 3eqtr4i { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑧 ⟩ ∣ 𝜒 }