Metamath Proof Explorer


Theorem cbvoprab2vw

Description: Change the second bound variable in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab2vw.1 y = w ψ χ
Assertion cbvoprab2vw x y z | ψ = x w z | χ

Proof

Step Hyp Ref Expression
1 cbvoprab2vw.1 y = w ψ χ
2 opeq2 y = w x y = x w
3 2 opeq1d y = w x y z = x w z
4 3 eqeq2d y = w t = x y z t = x w z
5 4 1 anbi12d y = w t = x y z ψ t = x w z χ
6 5 exbidv y = w z t = x y z ψ z t = x w z χ
7 6 cbvexvw y z t = x y z ψ w z t = x w z χ
8 7 exbii x y z t = x y z ψ x w z t = x w z χ
9 8 abbii t | x y z t = x y z ψ = t | x w z t = x w z χ
10 df-oprab x y z | ψ = t | x y z t = x y z ψ
11 df-oprab x w z | χ = t | x w z t = x w z χ
12 9 10 11 3eqtr4i x y z | ψ = x w z | χ