| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvmpo2.1 |
|- F/_ y A |
| 2 |
|
cbvmpo2.2 |
|- F/_ w A |
| 3 |
|
cbvmpo2.3 |
|- F/_ w C |
| 4 |
|
cbvmpo2.4 |
|- F/_ y E |
| 5 |
|
cbvmpo2.5 |
|- ( y = w -> C = E ) |
| 6 |
2
|
nfcri |
|- F/ w x e. A |
| 7 |
|
nfcv |
|- F/_ w B |
| 8 |
7
|
nfcri |
|- F/ w y e. B |
| 9 |
6 8
|
nfan |
|- F/ w ( x e. A /\ y e. B ) |
| 10 |
3
|
nfeq2 |
|- F/ w u = C |
| 11 |
9 10
|
nfan |
|- F/ w ( ( x e. A /\ y e. B ) /\ u = C ) |
| 12 |
1
|
nfcri |
|- F/ y x e. A |
| 13 |
|
nfv |
|- F/ y w e. B |
| 14 |
12 13
|
nfan |
|- F/ y ( x e. A /\ w e. B ) |
| 15 |
4
|
nfeq2 |
|- F/ y u = E |
| 16 |
14 15
|
nfan |
|- F/ y ( ( x e. A /\ w e. B ) /\ u = E ) |
| 17 |
|
eleq1w |
|- ( y = w -> ( y e. B <-> w e. B ) ) |
| 18 |
17
|
anbi2d |
|- ( y = w -> ( ( x e. A /\ y e. B ) <-> ( x e. A /\ w e. B ) ) ) |
| 19 |
5
|
eqeq2d |
|- ( y = w -> ( u = C <-> u = E ) ) |
| 20 |
18 19
|
anbi12d |
|- ( y = w -> ( ( ( x e. A /\ y e. B ) /\ u = C ) <-> ( ( x e. A /\ w e. B ) /\ u = E ) ) ) |
| 21 |
11 16 20
|
cbvoprab2 |
|- { <. <. x , y >. , u >. | ( ( x e. A /\ y e. B ) /\ u = C ) } = { <. <. x , w >. , u >. | ( ( x e. A /\ w e. B ) /\ u = E ) } |
| 22 |
|
df-mpo |
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , u >. | ( ( x e. A /\ y e. B ) /\ u = C ) } |
| 23 |
|
df-mpo |
|- ( x e. A , w e. B |-> E ) = { <. <. x , w >. , u >. | ( ( x e. A /\ w e. B ) /\ u = E ) } |
| 24 |
21 22 23
|
3eqtr4i |
|- ( x e. A , y e. B |-> C ) = ( x e. A , w e. B |-> E ) |