| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvrab.1 |  |-  F/_ x A | 
						
							| 2 |  | cbvrab.2 |  |-  F/_ y A | 
						
							| 3 |  | cbvrab.3 |  |-  F/ y ph | 
						
							| 4 |  | cbvrab.4 |  |-  F/ x ps | 
						
							| 5 |  | cbvrab.5 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 6 |  | nfv |  |-  F/ z ( x e. A /\ ph ) | 
						
							| 7 | 1 | nfcri |  |-  F/ x z e. A | 
						
							| 8 |  | nfs1v |  |-  F/ x [ z / x ] ph | 
						
							| 9 | 7 8 | nfan |  |-  F/ x ( z e. A /\ [ z / x ] ph ) | 
						
							| 10 |  | eleq1w |  |-  ( x = z -> ( x e. A <-> z e. A ) ) | 
						
							| 11 |  | sbequ12 |  |-  ( x = z -> ( ph <-> [ z / x ] ph ) ) | 
						
							| 12 | 10 11 | anbi12d |  |-  ( x = z -> ( ( x e. A /\ ph ) <-> ( z e. A /\ [ z / x ] ph ) ) ) | 
						
							| 13 | 6 9 12 | cbvab |  |-  { x | ( x e. A /\ ph ) } = { z | ( z e. A /\ [ z / x ] ph ) } | 
						
							| 14 | 2 | nfcri |  |-  F/ y z e. A | 
						
							| 15 | 3 | nfsb |  |-  F/ y [ z / x ] ph | 
						
							| 16 | 14 15 | nfan |  |-  F/ y ( z e. A /\ [ z / x ] ph ) | 
						
							| 17 |  | nfv |  |-  F/ z ( y e. A /\ ps ) | 
						
							| 18 |  | eleq1w |  |-  ( z = y -> ( z e. A <-> y e. A ) ) | 
						
							| 19 |  | sbequ |  |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) | 
						
							| 20 | 4 5 | sbie |  |-  ( [ y / x ] ph <-> ps ) | 
						
							| 21 | 19 20 | bitrdi |  |-  ( z = y -> ( [ z / x ] ph <-> ps ) ) | 
						
							| 22 | 18 21 | anbi12d |  |-  ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) ) | 
						
							| 23 | 16 17 22 | cbvab |  |-  { z | ( z e. A /\ [ z / x ] ph ) } = { y | ( y e. A /\ ps ) } | 
						
							| 24 | 13 23 | eqtri |  |-  { x | ( x e. A /\ ph ) } = { y | ( y e. A /\ ps ) } | 
						
							| 25 |  | df-rab |  |-  { x e. A | ph } = { x | ( x e. A /\ ph ) } | 
						
							| 26 |  | df-rab |  |-  { y e. A | ps } = { y | ( y e. A /\ ps ) } | 
						
							| 27 | 24 25 26 | 3eqtr4i |  |-  { x e. A | ph } = { y e. A | ps } |