Description: A more general version of cbvrabv . Version of cbvrabv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by Glauco Siliprandi, 23-Oct-2021) (Revised by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvrabv2w.1 | |- ( x = y -> A = B ) |
|
| cbvrabv2w.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbvrabv2w | |- { x e. A | ph } = { y e. B | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrabv2w.1 | |- ( x = y -> A = B ) |
|
| 2 | cbvrabv2w.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 3 | id | |- ( x = y -> x = y ) |
|
| 4 | 3 1 | eleq12d | |- ( x = y -> ( x e. A <-> y e. B ) ) |
| 5 | 4 2 | anbi12d | |- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. B /\ ps ) ) ) |
| 6 | 5 | cbvabv | |- { x | ( x e. A /\ ph ) } = { y | ( y e. B /\ ps ) } |
| 7 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 8 | df-rab | |- { y e. B | ps } = { y | ( y e. B /\ ps ) } |
|
| 9 | 6 7 8 | 3eqtr4i | |- { x e. A | ph } = { y e. B | ps } |