Metamath Proof Explorer


Theorem cbvrabv2w

Description: A more general version of cbvrabv . Version of cbvrabv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by Glauco Siliprandi, 23-Oct-2021) (Revised by Gino Giotto, 16-Apr-2024)

Ref Expression
Hypotheses cbvrabv2w.1 x = y A = B
cbvrabv2w.2 x = y φ ψ
Assertion cbvrabv2w x A | φ = y B | ψ

Proof

Step Hyp Ref Expression
1 cbvrabv2w.1 x = y A = B
2 cbvrabv2w.2 x = y φ ψ
3 nfcv _ y A
4 nfcv _ x B
5 nfv y φ
6 nfv x ψ
7 3 4 5 6 1 2 cbvrabcsfw x A | φ = y B | ψ